Involutory Hopf algebras and 3-manifold invariants
نویسنده
چکیده
We establish a 3-manifold invariant for each finite-dimensional, involutory Hopf algebra. If the Hopf algebra is the group algebra of a group G, the invariant counts homomorphisms from the fundamental group of the manifold to G. The invariant can be viewed as a state model on a Heegaard diagram or a triangulation of the manifold. The computation of the invariant involves tensor products and contractions of the structure tensors of the algebra. We show that every formal expression involving these tensors corresponds to a unique 3-manifold modulo a well-understood equivalence. This raises the possibility of an algorithm which can determine whether two given 3-manifolds are homeomorphic.
منابع مشابه
The Equality of 3-manifold Invariants
The invariants of 3-manifolds defined by Kuperberg for involutory Hopf algebras and those defined by the authors for spherical Hopf algebras are the same for Hopf algebras on which they are both defined. Introduction The purpose of this paper is to compare two previously defined invariants of 3-manifolds. Let A be a finite-dimensional Hopf algebra over a field F with antipode S. Then if S = 1 t...
متن کاملOn 3-manifold Invariants Arising from Finite-dimensional Hopf Algebras
We reformulate Kauffman’s method of defining invariants of 3-manifolds intrinsically in terms of right integrals on certain finite dimensional Hopf algebras and define a type of universal invariants of framed tangles and invariants of 3-manifolds.
متن کاملInvolutory Hopf Group-coalgebras and Flat Bundles over 3-manifolds
Given a group π, we use involutary Hopf π-coalgebras to define a scalar invariant of flat π-bundles over 3-manifolds. When π = 1, this invariant equals to the one of 3-manifolds constructed by Kuperberg from involutary Hopf algebras. We give examples which show that this invariant is not trivial.
متن کاملCosovereign Hopf algebras
A sovereign monoidal category is an autonomous monoidal category endowed with the choice of an autonomous structure and an isomorphism of monoidal functors between the associated left and right duality functors. In this paper we define and study the algebraic counterpart of sovereign monoidal categories: cosovereign Hopf algebras. In this framework we find a categorical characterization of invo...
متن کاملNew Modular Hopf Algebras related to rational
We show that the Hopf link invariants for an appropriate set of finite dimensional representations of U q SL(2) are identical, up to overall normalisation, to the modular S matrix of Kac and Wakimoto for rational k sl(2) representations. We use this observation to construct new modular Hopf algebras, for any root of unity q = e −iπm/r , obtained by taking appropriate quotients of U q SL(2), tha...
متن کامل